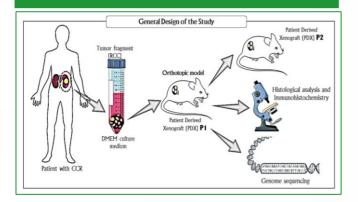


PATIENT-DERIVED RENAL CELL CARCINOMA XENOGRAFTS CAPTURE TUMOR GENETIC PROFILES AND AGGRESSIVE BEHAVIORS


BESERRA, A.O.; ESTEVAM, E.C.; CUNHA, I.W.; BEZERRA, S.M.; TANUS, I.; TORRESAN, G.T.; CARRARO, D.M.; COSTA, W.H.; ZEQUI, S.C.; MARTINS, V.R.; SANTOS, T.G.

A.C.Camargo Cancer Center

INTRODUCTION

- Patient-derived xenografts (PDX) have emerged as one of the most promising model systems to study cancer biology and to develop new antineoplastic drugs. Renal cell carcinoma (RCC) represents up to 90% of all kidney tumors, exhibits aggressive behavior, and has a propensity for metastasis.
- At diagnosis, 30% of patients with RCC have metastases, while up to 50% of those with localized disease treated with curative protocols experience recurrence.
- Therefore, the central objective of the present study was to establish a platform of studies based on morphological and genetic characterization of renal tumors in immunodeficient animals.

MATERIALS AND METHODS

RESULTS

Table 1: Clinical characteristics of patients and tumo implantation route influencing PDX take rate.

		Orthotopic			Ectopic	
	PDX engraftment	Yes	Total	P	Total	
		N = 19	N = 70		N = 17	
Gender	Male	12	48	0.76	10	
	Female	7	22		7	
Age	Mean	59.5	56.9		63	
Time to growth (months)	Mean	6	-			
	Minimum	1	-			
	Maximum	13	_			
Subtype	Clear cell	15	55	1.00	13	
	Papillary	3	10		3	
	MiT family translocation	0	2		0	
	Unclassifiable	1	3		1	
Staging	pTla	5	24	0.09	11	
	pT1b	0	21		3	
	pT2a		2		0	
	pT3a	7	19		3	
	pT3b	7	3		0	
	pT4	0	1		0	
Histologic grade	1	0	3	0.49	0	
	2	6	24		6	
	3	7	29		8	
	4	6	14		3	
Sarcomatoid	Yes	5	9	0.05	0	
	No	14	61		17	
Rhabdoid	Yes	6	11	0.05	0	
	No	13	59		17	
Necrosis	Yes	8	23	0.393	5	
	No	11	47		12	

Figure 1: Standardization of the Orthotopic Implant Model. (A) Left lumbotomy; (B) Isolation of the kidney; (C) Transversal incision in renal capsule; (D) 4 subcapsular tumor fragments.

RESULTS

Table 2: Genetic characterization

Histology	Pathological	Gene	Mutation type	Primary tumor	PDX frequency
matology	staging	Gene		frequency	- DA irequency
Clear Cells	pT1b	BAP1	Missense	10,0%	99,0%
		CDKN2A	Missense	2,9%	0,0%
		TP53	Missense	10,9%	82,0%
		TP53	LoF	6,7%	4,4%
Papillary	pT3a N1	ARID1A	LoF	42,0%	49,2%
- иринату		ARID1A	LoF	42,8%	46,0%
	pT3a	VHL	LoF	28,5%	79,3%
Clear Cells		PBRM1	LoF	31,8%	98,0%
		KDM5C	LoF	47.0%	99,0%
Clear Cells	pT1a	VHL	Missense	17,3%	0,0%
Clear Cells		PBRM1	LoF	19,9%	0,0%
1	pT1a	VHL	LoF	46,1%	86,1%
Clear Cells		PBRM1	LoF	50,5%	88,5%
		AR	Missense	7,1%	2,4%
	pT3a	VHL	LoF	53,3%	78,1%
Clear Cells		SETD2	LoF	54,2%	71,9%
		PBRM1	LoF	50,3%	69,0%
Clear Cells	pT3b	SETD2	LoF	31,1%	68,1%
Cicai Celis		KDM5C	Missense	26,9%	57,1%
Papillary	pT1a	MET	Missense	51,5%	67,0%
Papillary		SMARCA4	Missense	37,8%	51,6%
Clear Cells	pT3a	VHL	LoF	44,0%	99,1%
		PBRM1	LoF	2,8%	0,0%
		SETD2	LoF	1,7%	0,0%
		PBRM1	LoF	42,0%	100,0%
Clear Cells	pT3b	TP53	Missense	32,8%	99,7%

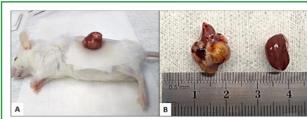
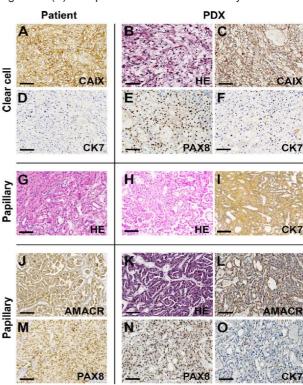



Figure 2: Evidence of tumor growth (A) Tumor growth. (B) Comparison between the kidneys

Figure 3: Patient-derived xenografts preserve the major morphologic characteristics of RCC. Calibration bars = 100um.

CONCLUSION

Taken together, these results suggest that the orthotopic xenograft model of RCC represents a suitable tool to study RCC biology, identify biomarkers, and to test therapeutic candidates.

CONTACT

E-mail: adriano.beserra@accamargo.org.br