



# Adjuvant Therapy in High-Risk Localized Renal Cell Carcinoma: are we ready for this indication?

Leonardo Atem G. A. Costa, MD

Medical Oncology

Oncologia D'Or – Fortaleza/CE



#### Disclosures

• Speaker: Roche, Astra Zeneca, Astellas, Janssen

No conflict of interest for this presentation



#### INTRODUCTION

• 300.000 cases of kidney cancer worldwide

90% of these cancers are renal cell carcinoma

• 65% diagnosed with localized and 16% with loco-regional disease

- Depending on stage and risk factors, up to 40% will recur
  - High-risk patients (approx. 15%) 5y rate of recurrence = 60%

# IDENTIFYING PATIENTS AT HIGH RISK FOR TUMOR RECURRENCE

- SSIGN score by Mayo Clinic
  - Designed to predict cancer-specific survival
- The Leibovich score (Mayo Clinic PFS score)
  - Specifically designed to predict progression to metastatic RCC after nephrectomy
- UISS (UCLA integrated staging system) risk score
  - Designed to stratify patients into risk groups and predict survival
- Other risk stratification tools based on molecular features
  - ClearCode34 (34-gene classifier model)
  - 16-gene Recurrence Score

Lam JS, et al. J Urol 2005; Leibovich BC, et al. Cancer 2003 Figlin RA, et al. Annals of Oncol 2018



## Adjuvant therapy for locally advanced renal cell cancer: A systematic review with meta-analysis

Adolfo JO Scherr, Joao Paulo SN Lima, Emma C Sasse, Carmen SP Lima and André D Sasse\*



Scherr et al. BMC Cancer 2011



### Adjuvant RCC studies of the targeted therapy era

| Study   | Arms                              | Duration                     | N    | Primary endpoint      |
|---------|-----------------------------------|------------------------------|------|-----------------------|
| ASSURE  | Sunitinib<br>Sorafenib<br>Placebo | 1 year                       | 1923 | NO DIFFERENCE         |
| S-TRAC  | Sunitinib<br>Placebo              | 1 year                       | 720  | Disease-free survival |
| ATLAS   | Axitinib<br>Placebo               | 3 years                      | 690  | STOPPED DUE FUTILITY  |
| SORCE   | Sorafenib<br>Sorafenib<br>Placebo | 3 years<br>1 year<br>3 years | 1656 | PENDING               |
| PROTECT | Pazopanib<br>Placebo              | 1 year                       | 1500 | NO DIFFERENCE         |
| EVEREST | Everolimus<br>Placebo             | 54 weeks                     | 1218 | PENDING               |



# STRACT Trial: Disease-Free Survival By Blinded Independent Central Review





### STRACT Trial: Updated Overall Survival





#### STRACT Trial: Common Adverse Events

|                      |            | Sunitinib (n=306) |         | Placebo (n=304) |         |         |  |  |
|----------------------|------------|-------------------|---------|-----------------|---------|---------|--|--|
|                      | All Grades | Grade 3           | Grade 4 | All Grades      | Grade 3 | Grade 4 |  |  |
| Adverse Event, %     |            |                   |         |                 |         |         |  |  |
| Any adverse event    | 99.7       | 48.4              | 12.1    | 88.5            | 15.8    | 3.6     |  |  |
| Diarrhea             | 56.9       | 3.9               | 0       | 21.4            | 0.3     | 0       |  |  |
| PPE                  | 50.3       | 15.0              | 1.0     | 10.2            | 0.3     | 0       |  |  |
| Hypertension         | 36.9       | 7.8               | 0       | 11.8            | 1.0     | 0.3     |  |  |
| Fatigue              | 36.6       | 4.2               | 0.7     | 24.3            | 1.3     | 0       |  |  |
| Nausea               | 34.3       | 2.0               | 0       | 13.8            | 0       | 0       |  |  |
| Dysgeusia            | 33.7       | 0                 | 0       | 5.9             | 0       | 0       |  |  |
| Mucosal inflammation | 33.7       | 4.6               | 0       | 8.2             | 0       | 0       |  |  |
| Dyspepsia            | 26.8       | 1.3               | 0       | 6.3             | 0       | 0       |  |  |
| Stomatitis           | 26.5       | 1.6               | 0.7     | 4.3             | 0       | 0       |  |  |
| Neutropenia          | 23.5       | 7.5               | 1.0     | 0.7             | 0       | 0       |  |  |
| Asthenia             | 22.5       | 3.6               | 0       | 12.2            | 0.7     | 0.3     |  |  |
| Hair color change    | 22.2       | 0                 | 0       | 2.3             | 0       | 0       |  |  |
| Thrombocytopenia     | 20.9       | 4.9               | 1.3     | 1.6             | 0.3     | 0       |  |  |

#### Differences between ASSURE, S-TRACT & PROTECT





### Risk overlap between patient population



Figlin RA, et al. Annals of Oncol 2018



# PROTECT Trial: Disease-free survival (DFS) in the intent-to-treat pazopanib 600 / 800 mg







# PROTECT Trial: Relationship between pazopanib C $_{\rm trough}$ and DFS plotted by early C $_{\rm trough}$ (week 3 or 5)



available at www.sciencedirect.com
journal homepage: www.europeanurology.com





## Adjuvant Vascular Endothelial Growth Factor—targeted Therapy in Renal Cell Carcinoma: A Systematic Review and Pooled Analysis

Maxine Sun<sup>a</sup>, Lorenzo Marconi<sup>b</sup>, Tim Eisen<sup>c</sup>, Bernard Escudier<sup>d</sup>, Rachel H. Gles<sup>e,f</sup>, Naomi B. Haas<sup>g</sup>, Lauren C. Harshman<sup>a</sup>, David I. Quinn<sup>h</sup>, James Larkin<sup>i</sup>, Sumanta K. Pal<sup>j</sup>, Thomas Powles<sup>k</sup>, Christopher W. Ryan<sup>l</sup>, Cora N. Sternberg<sup>m</sup>, Robert Uzzo<sup>n</sup>, Toni K. Choueiri <sup>a,1</sup>, Axel Bex<sup>o,1</sup>



|              | В | Model  | Study nam | e Subgroup within str | ıd <u>,Compariso</u> n | Outcom | e               | Statistic      | cs for eac | h study |         |     | Hazard ratio and 95% CI | _ |
|--------------|---|--------|-----------|-----------------------|------------------------|--------|-----------------|----------------|------------|---------|---------|-----|-------------------------|---|
| $\bigcirc$ C |   |        |           |                       |                        |        | Hazard<br>ratio | Lower<br>limit |            | Z Value | p Value |     |                         |   |
| <b>U</b> 3   |   |        | ASSURE    | ITT                   | sorafenib vs placebo   | os     | 0.980           | 0.776          | 1.238      | -0.169  | 0.865   |     | <del></del>             |   |
|              |   |        | ASSURE    | ITT                   | sunitinib vs placebo   | OS     | 1.170           | 0.930          | 1.471      | 1.343   | 0.179   |     | <del>  •</del>          |   |
|              |   |        | PROTECT   | ITT                   | pazopanib vs placebo   | OS     | 0.790           | 0.571          | 1.092      | -1.425  | 0.154   |     | <del></del>             |   |
|              |   |        | S-TRAC    | ITT                   | sunitinib vs placebo   | OS     | 0.920           | 0.661          | 1.281      | -0.493  | 0.622   |     | <del></del>             |   |
|              |   | Fixed  |           |                       |                        |        | 0.993           | 0.869          | 1.135      | -0.100  | 0.920   |     |                         |   |
|              |   | Random |           |                       |                        |        | 0.983           | 0.839          | 1.153      | -0.208  | 0.835   |     |                         |   |
|              |   |        |           |                       |                        |        |                 |                |            |         |         | 0.5 | 1                       | 2 |

Favors targeted therapy Favors placebo

Favors targeted therapy

Favors placebo





Favors targeted therapy Favors placebo



## On-going adjuvant trials with IOs in RCC

| Sponsor                      | Randomization                           | Treatment<br>Details                                                         | N   | Status           | Inclusion<br>Stage/Grade                                                             | Histology                                                 |
|------------------------------|-----------------------------------------|------------------------------------------------------------------------------|-----|------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|
| PROSPER<br>(ECOG-<br>EA8143) | Nivolumab<br>vs surgical SOC            | IV Q 2<br>Wks x 3<br>mos. then<br>monthly<br>for 6 mos.                      | 766 | Ongoing          | T2 or higher N+<br>non-mRCC                                                          | Any                                                       |
| IMMotion<br>(Genentech)      | Atezolizumab<br>vs Placebo              | 1200 mg IV<br>q 3 wks for 1<br>yr.                                           | 664 | Ongoing          | Resected high<br>risk T2 or T3 or<br>resected M0                                     | Clear cell including sarcomatoid features                 |
| KEYNOTE -<br>564<br>(Merck)  | Pembrolizumab<br>vs Placebo             | 200 mg IV q<br>3 wk for 1 yr                                                 | 950 | Ongoing          | Post-<br>nephrectomy;<br>intermediate-<br>high risk, high<br>risk, and M1<br>NED RCC | Clear cell<br>including<br>sarcomatoid<br>features        |
| Checkmate -<br>914<br>(BMS)  | Nivolumab +<br>Ipilimumab<br>vs Placebo | Nivo<br>3mg/kg<br>and Ipi 1<br>mg/kg x 4<br>doses then<br>Nivo for 24<br>wks | 800 | Starting<br>2018 | T2a, G3 or G4,<br>N0M0<br>pathological<br>T2b,T3,T4 G<br>any,<br>pT any, N1          | Clear cell<br>RCC<br>including<br>sarcomatoid<br>features |



### Open Questions / Future Directions

- DFS is the appropriate definitive endpoint ?
- Will a longer follow-up result in an effect on OS with adjuvant targeted therapy? Remote possibility
- What is the the role of mTOR pathway inhibition and immune checkpoint inhibition in the adjuvant setting?
- Can we better select patients at higher risk for recurrence with tools based on molecular features?



#### Conclusions

- Efficacy of VEGFR-TKIs in the adjuvant RCC setting has been shown in principle
- The balance between potential therapeutic benefit and associated toxicity and effects on quality of life is complex
- Current data strongly suggest that patient selection is crucial
- Patients with high-risk clear cell tumours, who can tolerate the full effective dose, are more likely to benefit
- Collectively, existing data do NOT justify the use of routine adjuvant VEGFR-targeted therapy in resected RCC
- Pending the results of ongoing trials.



## Thanks!

leoatem@uol.com.br